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Global Analysis Introduction

Introduction

This is the first book containing examples from Functional Analysis. We shall here deal with the
subject Global Analysis. The contents of the following books are

Functional Analysis, Examples c-2
Topological and Metric Spaces, Banach Spaces and Bounded Operators
1. Topological and Metric Spaces
(a) Weierstraf’s approximation theorem
(b

) Topological and Metric Spaces
(¢) Contractions
)

(d) Simple Integral Equations
2. Banach Spaces
(a) Simple vector spaces
(b

)

) Normed Spaces
¢) Banach Spaces
(c) p

)

(d) The Lebesgue integral

3. Bounded operators

Functional Analysis, Examples c-3
Hilbert Spaces and Operators on Hilbert Spaces
1. Hilbert Spaces

(a) Inner product spaces

(b) Hilbert spaces

(
(d

(e) Orthogonal projections and complement

)
)

c¢) Fourier series
) Construction of Hilbert spaces
)
)

(f) Weak convergency
2. Operators on Hilbert Spaces

(a) Operators on Hilbert spaces, general

(b) Closed operators

Functional Analysis, Examples c-4
Spectral theory

1. Spectrum and resolvent

2. The adjoint of a bounded operator

Self-adjoint operators

- W

Isometric operators
5. Unitary and normal operators
6. Positive operators and projections

7. Compact operators
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Functional Analysis, Examples c-5
Integral operators

1. Hilbert-Schmidt operators

2. Other types of integral operators
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Global Analysis 1. Metric Spaces

1 Metric Spaces
Example 1.1 Let (X,dx) and (Y,dy) be metric spaces. Define
dxxy : (X xY)x (X xY) = RJ
by
dxxy ((x1,91), (T2, y2)) = max (dx (v1,72), dy (Y1, Y2)) -
1. Show that dxxy is a metric on X x Y.
2. Show that the projections
px: X xY =X, px(vy) ==z,

py 1 X XY =Y, py(z,y) = v,

are continuous mappings.

The geometric interpretation is that dx «y compares the distances of the coordinates and then chooses
the largest of them.

35

25

05

Figure 1: The points (z1,y1) and (22,y2), and their projections onto the two coordinate axes.

1. MET 1. We have assumed that dx and dy are metrics, hence

dxxy ((z1,y1), (x2,¥2)) = max (dx (z1,22),dy (y1,%2)) > max(0,0) = 0.
If

dxxy ((z1,y1), (x2,y2)) = max (dx (z1,22),dy (y1,92)) =0,
then

dx(r1,91)=0 and  dy(y1,92) =0.
Using that dx and dy are metrics, this implies by MET 1 for dx and dy that z; = x4
and y; = ya, thus
(z1,91) = (22, ¥2),
and MET 1 is proved for dxxy.
MET 2. From dx and dy being symmetric it follows that
dxxy ((z1,91), (x2,92)) = max(dx(21,22),dy (y1,y2))
= max (dx(z2,71),dy (y2,91))
dxxy ((r2,92), (z1,91)),
and we have proved MET 2 for dxxy.
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1. Metric Spaces

Global Analysis

MET 3. THE TRIANGLE INEQUALITY. If we put in (,y), we get

dx(z1,2) + dx(z,z2)

dx(z1,22) <
dxxy ((z1,91), (z,9)) +dxxy (z,9), (2,2)),

IN

and analogously,

dy (y1,y2) < dxxy ((z1,91), (7,9)) + dxxy ((z,9), (x2,y2)) -
Hence the largest of the numbers

dx(z1,72)  and  dy(y1,y2)

must be smaller than or equal to the common right hand side, thus

dxxy ((x1,y1), (®2,¥2)) = max (dx (1, 22),dy (y1,92))
<dxxy ((x1,91), (7,9)) + dxxv (z,9), (v2,92)),

and MET 3 is proved.
Summing up, we have proved that dxxy is a metric on X x Y.

2. Since px : X x Y — X fulfils
dx (px ((x,v)),px ((z0,10))) = dx (z,20) < dxxy ((x,¥), (z0,%0)),

we can to every € > 0 choose 6 = €. Then it follows from dx«y ((x,y), (z0,y0)) < € that

dx (px((z,)), px ((20,90))) < dxxy ((z,9), (20, %0)) <,

and we have proved that px is continuous.

The proof of py : X XY — Y also being continuous, is analogous.

Example 1.2 Let (S,d) be a metric space. For every pair of points x, y € S, we set

d(z
Aoy =1 +(d(7a1:/,) )
Show that d is a metric on S with the property
0<d(xz,y)<1  forallz,ycsS.
HINT: You may in suitable way use that the function ¢ : R§ — RS‘ defined by

t
)= —— t e RT
90() 1 t» € 0>

18 1ncreasing.

MET 1. Obviously,

3 d(l‘,y)
d(z,y) = m >0,

and if d(x,y) = 0, then d(x,y) = 0, hence z = y.

MET 2. From d(z,y) = d(y, z) follows that

3 _ d(CE, y) _ d(y7 (E) _ g
d(z,y) = tdzy)  1+d.7) =d(y,x).
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Global Analysis 1. Metric Spaces
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Figure 2: The graph of ¢(t) and its horizontal asymptote.

MET 3. We shall now turn to the triangle inequality,

d(z,y) < d(z,2) +d(z,z).
Now,
d(z,y) < d(z,z) +d(z,y),

and

t 1

t)=—=1——-¢€10,1 for t > 0,
o) =157 g €101 =
is increasing. Since a positive fraction is increased, if its positive denominator is decreased

(though still positive), it follows that

Qo) = 25— plday)

d(x,z) +d(z,y)

< pld(z, 2) +d(z, 7)) = 1+d(z,2) +d(z,y)
_ d(z, z) d(z,y)
14+d(z,2) +d(z,y)  1+d(z,z)+d(zy)
d(z, z) d(z,y)

1+d(z,z)  1+4+d(z,v)
= d(z,2) +d(z,y),

and we have proved that d is a metric.

Now, ¢(t) € [0,1] for t € R{, thus
d(z,y) = p(d(z,y)) € [0,1] forallz,ye S,
hence

0<d(z,y) <1 for all z, y € S.

Remark 1.1 Let ¢ : Rj — R{ satisfy the following three conditions:
1. ¢(0) =0, and p(t) >0 for ¢t > 0,

2.  is increasing
3. 0< p(t+u) < (t) +p(u) for all t, u € RY.

If d is a metric on S, then ¢ o d is also a metric on S.

The proof which follows the above, is left to the reader. ¢
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Global Analysis 1. Metric Spaces

Example 1.3 Let K be an arbitrary set, and let (S,d) be a metric space, in which 0 < d(x,y) <1
forallx, y e S.

Let F(K,S) denote the set of mappings f : K — S.

Define D : F(K,S) x F(K,S) — R{ by

D(f,g) = supd(f(t),g(t)).

teK
1. Show that D is a metric on F(K,S).
2. Let tg € K be a fixed point in K and define
Euv, : F(K,5) =S by Euvy(f) = f(to).

Show that Evy, is continuous.

(Evy, is called an evolution map.)

Figure 3: The metric D measures the largest point-wise distance d between the graphs of two functions
over each point in the domain ¢ € K.

First notice that since 0 < d(z,y) < 1, we have

D(f,g) = sup d(f(t),g(t)) <1 for all f, g € F(K,S).

Without a condition of boundedness the supremum could give us 400, and D would not be defined
on all of F(K,S) x F(K,S).

1. MET 1. Clearly, D(f,g) > 0. Assume now that
D(f,g) =supd(f(t),g(t)) =0.
teK

Then
d(f(t),g(t) =0 for all t € K,

thus f(t) = g(¢t) for all t € K. This means that f = g, and MET 1 is proved.
MET 2. is obvious, because

D(f,9) = sup d(f(t),g(t)) = supd(g(t), f(t)) = D(g, f).

teK teK
MET 3. It follows from

d(f(t),9(t)) < d(f(t), (1)) + d(h(t),g(t))  forallte K,
that

D(f,9) = supd(f(t),g(t)) < sup{d(f(t), h(t)) + d(h(t),9(t))}.

teK teK

Download free books at BookBooN.com

10



Please click the advert

Global Analysis 1. Metric Spaces

The maximum/supremum of a sum is of course at most equal to the sum of each of the
maxima/suprema, so we continue the estimate by

D(f,9) < supd(f(t),h(t)) + supd(h(t),g(t)) = D(f,h) + D(g, h),
teK teK

and MET 3 is proved.

Summing up, we have proved that D is a metric on F(K,S).

2. Since

d(Evtu(f)7EUto(g)) = d(f(t0)7g(t0)) < sup d(f(t)?g(t)) = D(fvg)a

teK

we can to every € > 0 choose § = ¢, such that if
D(f,g) <d=e¢,
then

d(Ev, (f), Evi,(9)) < D(f,9) <e,

and the map Fvy, : F(K,S) — D is continuous.

Today’s job market values ambitious, innovative, perceptive team players. Swedish
universities foster these qualities through a forward-thinking culture where you’re
close to the latest ideas and global trends.
Whatever your career goals may be, studying in Sweden will give you valuable
Swedish Institute ~~ skills and a competitive advantage for your future. www.studyinsweden.se
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Global Analysis 1. Metric Spaces

Example 1.4 Ezample 1.1 (2) and Example 1.3 (2) are both special cases of a general result. Try to
formulate such a general result.

Let (X,dx) and (T,dy) be two metric spaces, and let » : Rf — RJ be a continuous and strictly
increasing map (at least in a non-empty interval of the form [0, a]) with ¢(0) = 0. Then the inverse
map ¢! :[0,¢(a)] — [0,a] exists, and is continuous and strictly increasing with ¢ =1(0) = 0.

Theorem 1.1 Let f : X — Y be a map. If

dy (f(2), f(y)) < p(dx(z,y))  foralz yeX,

then f is continuous.

PRrROOF. We may without loss of generality assume that 0 < & < a. Choose § = ¢~ 1(¢). If z, y € X
satisfy

dX(I7y) < §= @71(5%
then we have for the image points that

dy (f(2), f(y)) < ¢ (dx(z,y)) <@ (¢ () =¢,
and it follows that f is continuous.

EXAMPLES.

1. In the previous two examples, p(t) =t, t € Rg. Clearly, ¢ is continuous and strictly increasing,
and ¢(0) = 0.

2. Another example is given by () = ¢+ t, t € R{, where ¢ > 0 is a constant.
3. Of more sophisticated examples we choose
(1) =Vt, ) =exp(t) =1,  (t) =In(t+1),

¢(t) = sinh(t), o(t) = tanht, p(t) = Arctan ¢,

etc. etc..
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Global Analysis 2. Topology 1

2 Topology 1

Example 2.1 Let (S,d) be a metric space. For x € S and r € R" let B,(x) denote the open ball in
S with centre © and radius . Show that the system of open balls in S has the following properties:

1. Ify € B,(z) then x € B,.(y).
2. Ify € By(z) and 0 < s <r —d(x,y), then Bs(y) € B,(x).
3. Ifd(z,y) >r+s, where z, y € S, and v, s € RY, then B.(x) and By(y) are mutually disjoint.

We define as usual

B.(z)={y € S|d(z,y) <r}.

Figure 4: The two balls B, (x) and B, (y) and the line between the centres = and y. Notice that this
line lies in both balls.

1. If y € B,.(x), then it follows from the above that d(z,y) < r. Then also d(y,x) < r, which we
interpret as « € B, (y).

Figure 5: The larger ball B,.(z) contains the smaller ball B,(y), if only 0 < s < r — d(z,y).

2. If z € B,(y), then it follows from the triangle inequality that
d(x,z) < d(x,y) + d(y, z) <d(z,y) +s <d(z,y) +{r —d(z,y)} =,
which shows that z € B, (z). This is true for every z € By(y), hence

Bs(y) & Br(x).
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Figure 6: Two balls of radii r and s resp., where d(z,y) > r + s.

3. Indirect proof. Assume that the two balls are not disjoint. Then there exists a z € B,.(z)NB,(y).
We infer from the assumption d(z,y) > r + s and the triangle inequality that

r+s <d(x,y) <d(z,z) +d(x,y) <r+s,

thus » + r < r + s, which is a contradiction. Hence our assumption is false, and we conclude
that B,(z), and B(y) are disjoint.

www.job.oticon.dk

PEOPLE FIRST
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Global Analysis 2. Topology 1

Example 2.2 Let (S,d) be a metric space. A subset K in S is called bounded in (S,d), if there
exists a point x € S and an r € Rt such that K € B,.(z).
Examine the truth of each of the following three statements:

1. If two subsets K1 and Ky in S are bounded in (S,d), then their union K1 U K is also bounded
in (S,d).

2. If K €S is bounded in (S,d) then

K = [J{ye S| day) <1}

reK
is also bounded in (S,d).

3. If K C S is bounded in (S,d) then

K" = ({y €S |d(zy) > 1}

zeK

is also bounded in (S,d).

Figure 7: The smaller disc is caught by the larger disc of centre z¢, if only its radius is sufficiently
large.

Here there are several possibilities of solution. The elegant solution applies that a set K is bounded,
if there exists an R € RT, such that K S Bg(zg), where zg € S is a fixed point, which can be used
for every bounded subset. In fact, if K € B,.(x), then d(y,x) < r for all y € K. Then by the triangle
inequality

d(yva) < d(y,l’) + d(.’b,xo) < d(.’t,.’bo) +r= R(SL’),
thus K g BR(.’E()) = BR(f) (SC()).

1. First solution. If K; and K5 are bounded subsets, then we get with the same reference point
xg €5,

K1 g BR1 ((1?0) and K2 g BRQ(’JJ()),
hence
K1 UK, € Br,(20) U Br,(70) = Bmax{R,,R.}(Z0) = Br(zo).

Now R = max{R;, Ra} < +00, so it follows that the union K; U K5 is bounded, when both
K1 and K5 are bounded.

Download free books at BookBooN.com
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Global Analysis 2. Topology 1

Figure 8: A graphic description of the second solution.

Second solution. Here we give a proof which is closer to the definition. First note that there
are z, y € S and r, s > 0, such that

K, € B, () and K> € Bs(y).

Choosing R = r + d(z,y) + s > r, it is obvious that since the radius is increased and the
centre is the same

K, € B.(z) € Bg(z).
Then apply a result from ExaAMPLE 2.1 (2),
Ky & Bi(y) & Brtd(z,y)+s(7) = Br(z),
and we see that K7 U Ky € Bgr(z) U Bg(x) = Bgr(z) is bounded.

ALTERNATIVELY, it follows for every z € By(y) that
d(z,z) < d(z,y) +d(y, z) < d(z,y) +s5 < R,
sa Ko € Bs(y) € Bgr(z).
2. Now K is bounded, so K € Bg(x¢), and
K' € Bpyi(xo).

In fact, if y € K, then we can find an z € K, such that d(x,y) < 1. Since x € K € Bg(x¢), we
have d(x,zo) < R. Thus

d(y,zo) < d(y,z) +d(z,z0) < R+1,
and therefore y € Bry1(xg). This holds for every y € K’ so K’ € Bri1(x0), and K’ is bounded.
3. First possibility; the metric d is bounded. In this case there is a constant ¢ > 0, such that
d(z,y) < c< 400 for all z, y € S.
In particular, S is itself bounded,
S = B.(x), for every x € S.

Every subset of S is bounded.

Second possibility; the metric d is unbounded. In this case the claim is not true. In fact,
the complementary set of K"

(1) S\K"=J{yes|dwy <1} =K'
zeK

is bounded according to the second question. Then S = K’ U K” is a disjoint union,
and since K’ is bounded, while S is unbounded, we conclude that K" is also unbounded.
(Otherwise K’ U K" would be bounded by the first question).
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Remark 2.1 PrOOF OF (1). If

y¢ K" = ({yeS|dzy) >1},

reEK

then there exists an « € K, such that d(z,y) < 1, and () is replaced by |J, and d(z,y) > 1
is replaced by the negation d(z,y) <1, and (1) follows. ¢

Today’s job market values amb
universities foster these qualitie
close to the latest ideas and glob
SI, Whatever your career goals mz
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Download free books at BookBooN.com

17


http://bookboon.com/count/pdf/345743/17

Global Analysis 2. Topology 1

Example 2.3 List all topologies that can be defined on a set S = {a,b} containing only two elements
a and b.

Every topology must contain at least the empty set () and the total space S = {a,b}. The only
possibilities are

,Tl:{@,s}; 7—2:{07{0'}75}7 'Tg:{@,{b},S},

T = D(S) = {wv {a}7 {b}a S}a

where D(S) denotes the set of all subsets of S. It is well-known that 77 and 74 are topologies, called
the coarsest and the finest topology on S).

Since any union and even any intersection of sets from 75 again belong to 73, it follows that 75 is a
topology.

Analogously for 73 (exchange a by b).

The four possibilities above are therefore all possible topologies on S = {a, b}.

Example 2.4 Let T be the system of subsets U in R which is one of the following types:
Either

(i) U does not contain 0,
or

(ii) U does contain 0, and the complementary set R\ U is finite.

1. Show that T is a topology on R.

2. Show that R with the topology T is a Hausdorff space.

(A topological space (S,7) is called a Hausdorff space, if one to any pair of points z, y € S,
where x # y, can find a corresponding pair of disjoint open sets U, V' € 7, such that x € U and
yeV)

3. Prove that the topology T on R is not generated by a metric on R, because there does not exist
any countable system of open neighbourhoods of 0 € R in the topology T with the property that
any arbitrary open set of 0 € R contains a neighbourhood from this system.

1. We shall prove that
TOP 1. If {U; €T |i€} CT, then J,; Ui €T.
TOP 2. IfU; € T,i=1,..., k then i, U; € T.
TOP 1. §, Re 7.
We go through them one by one.

TOP 1. Let {U; € T | i € I} be any family of sets from 7.

(i) If no Uy, i € I, contains 0, then 0 ¢ | J;o; Ui, which means that | J;c, U; € 7.
(ii) If (at least) one U; contains 0, and R\ U; is finite, then

0elJUi and R\|JU; SR\ U is finite.
il iel
U, eT.
Summing up, we have proved condition TOP 1 for a topology.

TOP 2. Let {U; € T | i = 1,...,k} be a finite family of sets from 7. We shall start by
considering a system of sets, which all satisfy (ii).

This proves that J,.;

Download free books at BookBooN.com
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(ii) If 0 € Uy, and R\ U; is finite for every i = 1, ..., k, then 0 € (\_, Uy, and

k k
R\ (Ui =R\ U
=1 i=1

is a finite union of finite sets, hence itself finite.

ALTERNATIVELY, the longer version is the following: If R \ U; contains n; different
elements, then Ule R\ U; contains at most n = Zle n; < +oo different elements.

In this case we conclude that ﬂle UieT.

(i) If there is an U;, where i € {,...,k}, such that 0 ¢ U;, (notice that we are not at all
concerned with the other sets U; being open of type (i) or type (ii); we shall just have
one open set of type (i)), then clearly 0 ¢ ﬂle U;, thus ﬂle U, eT.

Summing up we have proved condition TOP 2 for a topology.

TOP 3. From 0 ¢ 0 follows from (i) that § € 7. From 0 € R and R\ R = () containing no
element it follows by (ii) that R € 7, and we have proved the remaining condition TOP 3
for a topology.

Summing up we have proved that 7 is a topology.
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Global Analysis 2. Topology 1

2. We shall now prove that the space (R, 7) is a Hausdorff space.
(i) If z, y € R\ {0}, then {z}, {y} € 7 by definition (i). Furthermore, if x # y, then clearly
{z}n{y} = 0.
(i) If z € R\ {0} and y = 0, then {z}, R\ {z} € 7 by (i) and (ii), resp., and 0 € R\ {z}, and
{z} N R\ {=z}) = 0.

We have proved that the space is a Hausdorff space.

3. Assume that {U, | n € N} is a countable system of open neighbourhoods of 0, thus 0 € U,,, and
R\ U, is finite. Then the “exceptional set”

A=JRr\U,
n=1
is at most countable. In particular, A # R.

Choose any point a € R\ (AU {0}). Then U =R\ {a} € 7 is a neighbourhood of 0, and none
of the U, is contained in U.

In fact, if U,, € U, then

{a} =R\UCR\U, C GR\Un:A,

n=1

which is a contradiction.
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Global Analysis 3. Continuous mappings

3 Continuous mappings

Example 3.1 Let S be a topological space with topology T, and let w: S — S be a mapping into a
set S. Let T be the quotient topology induced from the topology T on S by the mapping .

1. Let T' be a topology on S, such that © : S — S is continuous when S is considered with the
topology T and S with the topology T'.

Show that T' € T.

(The quotient topology T on S is in other words the ‘largest’ topology on S for which 7 : § — §
is continuous.)

2. Show that when S has the quotient topology determined by the mapping w : S — S, then the
following holds:

o A mapping f: S — T into a topological space T is continuous if and only if the composite
mapping fom: S — T is continuous.

Figure 9: The topology 7 is defined on S, and the quotient topology 7, or 77, is defined on S.

We recall that the quotient topology is defined by
T={VCS|U=aYV)eT}.
1. If 7: S — S is continuous in the topology 7/ on S and 7 on S, then
7Y (V)eT  forehvery V€T,
hence V € 7T for every V € T'. This means precisely that
T CT.

2. Assume that f : S — T is continuous, where S has the quotient topology 7 determined by

m: S — S, and where T has the topology 7 *. This means that
V) eT={WEs|[a (W) eT}

for every V € T*.
Then it follows that

T W) =7 (FUV) = (fom) (V) €T

for every V € T*. This is precisely the condition that the composite mapping fon: S — T is
continuous.
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Global Analysis 3. Continuous mappings

Figure 10: Diagram, where S has the topology 7, and S has the topology 7, and T has the topology
nT™.

Conversely, if fonm: S — T is continuous, then
T3 (fom) Y (V)=a"t(f71(V)) for every V e T*.

Then it follows from the definition of the quotient topology that if #=! (f=!(V)) € V, then
ff(vyerT.

Since f~1(V) € T for every V € T*, it follows that f : S — T is continuous, and the claim is
proved.
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Global Analysis 3. Continuous mappings

Example 3.2 Let S be a topological space. For every pair of real-valued functions f, g: S — R, we
can in the usual way define the functions f+g, f — g, f-g, and (if g(x) #0 for allz € S) f/g.

1. Show that if f and g are continuous al a point xg € S, then also f+g, f —g, f g, and (when
it is defined) f/g are continuous at xg € S.

(Carry through the argument in at least one case.)
2. Assume that f, g: S — R are continuous. Show that
U={zeS|f(x) <g(x)}
is an open set in S.
8. Let f1, ..., fr : S — R be continuous real-valued functions. Show that
U={zeS|filz)<ay,i=1,...,k}

is an open set in S, where a1, ..., ap € R are real numbers.

Figure 11: The interval [a + %, b+ g} to the left is by addition + mapped into the interval

[a+b—¢c,a+b+e].

1. In reality, this example is concerned with the continuity of the basic four arithmetical operations
+,—  RxR—>R og /:Rx(R\{0})—R.
The remaining part follows easily by composition of continuous mappings.

(a) Addition + : R x R — R is continuous.
Let (a,b) € R x R be given. To every ¢ > 0 choose § = g If

€

5 and \y—b|<%7

|z —al <
then
l(@+y)—(a+b)|<|z—a[+|y—bl<e,

which is precisely the classical proof of continuity.
(b) Subtraction — : R x R — R follows the same pattern: If

3 3
—af < d —-bl <5,
w—a <5 and Jy—bl<

then

((z—y)—(a=b)<|z—al+]y—b| <e
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(¢) Multiplication - : R x R — R is continuous.
We first assume that |z —a| < § and |y —b| < § in order to derive the right relation between
0 and e. From f(z,y) = x -y, we get by the triangle inequality by inserting —ay + av =0

that
|f(z,y) — f(a,b)] = |vy—an|=|zy — ay + au — ab|
< Jz—al-lyl+lal - ly—=b[ <& |yl +a| - o
< 6(]b] + 9 +al).

Since (&) = 6(|a| + |b| + ) is continuous and strictly increasing for § € R of the value
©(0) = 0, the mapping ¢ has a (continuous) inverse ¢ ~1. By choosing § = ¢~1(¢), we get
precisely

[f(z,y) = fla,b)] < p(d) =&,
and the multiplication is continuous.
(d) The mapping y — é is continuous for y € R\ {0}.
Let b # 0, and choose y and § €]0, |b|[, such that

ly— b <5 < |b).
Then

1 1 ly — b 0

= < , for 6 €10, |b|[.

’y b‘ R BCED) 1o. el

It is obvious that to any € > 0 there is a 6 > 0, such that
’1 _ 1‘ < 9
y bl (bl ([b] =)

and the mapping is continuous.

<e,

(e) If the denominator is # 0, then the division is continuous.
This is obvious, because division is composed of the continuous mappings

d) (w,y)m(xé) and ¢) @é)mx.l:f’

y oy

thus it is itself continuous.

Summing up we have proved that if ¢ : RxR — R is one of the four basic arithmetical operations
+, —, -, / (provided the denominator is # 0), then ¢ is continuous. Then the mapping

A fxg @
S —- xS — RxR — R,

is also continuous, because the diagonal mapping A(z) = (x,z) is trivially continuous, and
because f x f is continuous at (xg,xg) € S x S.

We have now proved 1).

2. If f, g : S — R are both continuous, then f — g : S — R is also continuous according to 1).
Then

U={zeS|flx)<gl@)}={zeS|(f-g)(z)<0}=(f—-9)""(—00,0)
is open, because R~ =] — 00, 0[) is open.
3. Each
Up={z eS| filz) <ai} = f771(] - 00, )
is open, hence
k k
U={x€S|fi(I)<ai,i=1,...,k}:ﬂ{x65|fi(x)<ai}:ﬂUi
i=1 i=1

is also open as a finite intersection of open sets.
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Global Analysis 3. Continuous mappings

Example 3.3 Let S be a topological space with topology T, and let A be an arbitrary subset in S.
Equip A with the induced topology T4.

Show that a subset B S A is closed in A with the topology T if and only if there exists a closed
subset B € S in the topology T such that B’ = AN B.

Figure 12: Diagram of the sets of Example 3.3.

The induced topology 74 is defined by
TAa={UNA|U€eT}.

1. Assume that B’ € A is closed in 74, thus A\ B’ is open in 74. By the above there is an U € 7T,
such that

UNnA=A\B.
Then B = S\ U is closed, and
BNA=AN(S\U)=A\U=A\(A\B)=hB.
2. Assume conversely that B’ = AN B, where B is closed in S, thus U = S\ B € 7 is open. Then
UNA=AN(S\B)=A\BeTy
is open in A, hence
A\(UNA)=A\(A\B)=AnB="F

is closed in A, i.e. in the topology 74.
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Example 3.4 Let f: X — Y be a mapping between topological spaces X and Y .

If f : X =Y maps a subset X' S X in X into a subset Y' S Y inY, then f determines a mapping
fr X' =Y defined by f'(z) = f(z) forz e X'.

When a subset of a topological space is considered as a topological space in the following, it is always
with the induced topology.

1. Let f': X' — Y’ be a mapping determined by f : X — Y as above. Show that if f is continuous,
then [’ is continuous.

2. Let Ay and As be closed subsets in X such that X = AjUAy. Let fy : Ay =Y and fo : As —» Y
be the mapping determined by f, i.e. the restrictions of f to A1 and As respectively.

Show that if f1 and fo are continuous, then f is continuous.

Figure 13: The restriction mapping of the first question.

Figure 14: Diagram corresponding to the second question.

1. Let U’ € Ty+ be open in Y, thus there is an U € 7Ty, such that

U=uny’.
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Global Analysis 3. Continuous mappings

Since f is continuous and U € Ty, we have f°~1(U) € Tx, hence
(fl)o—l(U/) _ (f/)o—l(U N Yl) — fo—l(U) N X/ c TX’7
proving that f’ is continuous.

2. Choosing B £ Y closed, we get
fHB) = 7BV (D),

where f7~1(B) is closed in Ay, and f5~'(B) is closed in As.

Since both A; and Ay are closed, it follows that f{~'(B) and f5'(B) are closed in S, thus
f°7Y(B) is closed in S, and f is continuous, where

flz) = { filz), =€ A,

falz), z€A Ay, As are closed and disjoint.
2(x), 2,

o
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Global Analysis 4. Topology 2

4 Topology 2

Example 4.1 Let W1 and W5 be arbitrary subsets in the topological space S. Show that
1. int(Wy N Wa) = int WiN int Wh.
2. int(W7 UW3) 2 int WhU int Wa.

Give an example that the equality sign in (2) does not apply in general.

1. If z € int(W; N Ws), then there is an open set U in S, such that

xeUCS WiNWsy,

and since W1 N Wy € W;, i =1, 2, we get in particular that
zeUCSW;, and ze€UCW,, soz € int Wi N int Ws.

This shows that
int (W NWa) € int Wo N int Wha.

Conversely, if z € int W1N int W5, then there exist open sets U; and Us, such that
xelU Sy and x €Uy & Wa.

Then U = U; N U, is open, and
zeU=UNU; CWNWs, thus z € int(W; N Wa).

It follows that int(Wy, N Ws) 2 int WiN int Wa, and we have proved that

int(W1 N Wg) = int Wi N int Ws.

2. We get from W1 € W7 U Wy and Wy € W7 U W5 that
int Wy € int(W; UWs) og int Wy € int(W; U W),
hence by taking the union,

int W1 U int W2 g int(W1 U WQ)

3. We do not always have equality here. An extreme example is
Wi=QcCR and Wy =R\ QCR,
i.e. the rational numbers and the irrational numbers. Then int Q = @) and int(R\ Q) = (), hence
= int(W7) U int(Ws) C int(QU (R\ Q)) = int(R) =R,

and we do not have equality.

Example 4.2 Show that a topological space S is a T1-space if and only if every subset in S containing
exactly one point is a closed subset.

Recall that S is a Ti-rum, if to any pair x, y € S of different points, & # y, there exists an open
neighbourhood V of y, such that « ¢ V.

1. Assume that all singletons {z}, x € S, are closed. Then S\ {z} is open.

If x, y € S and x # y, choose U = S\ {y} as an open neighbourhood of z, and V = S\ {z} as
an open neighbourhood of y. Then clearly, y ¢ U and « ¢ V, and S is a T}-space.
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2. Conversely, assume that e.g. {x} is not closed. Then the closure {x} contains a point
y € {z}\ {z} #0, and {z} is the smallest closed set which contains z.

If S were a T1-rum, then there would be an open neighbourhood V' of y, which does not contain
x. Then {2} N(S\ V) would be closed (as an intersection of two closed sets), non-empty (because
x lies in both sets), and certainly contained in {z}, i.e.

c {},

#{a).

0# {z} N (S\V) S {z}\ {y}

This is not possible because {x} is defined as the smallest closed set containing {x}.

Hence, if S is a Tj-space, then every point {z} is closed.
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Global Analysis 4. Topology 2

Example 4.3 Let S be a Hausdorff space, and let W be an arbitrary subset of S. (It is sufficient that
S satisfies the separation property Ty ).

Prove that if x € S is an accumulation point of W, then every neighbourhod of x in S contains
infinitely many different points of W.

An accumulation point x € S of W is a point for which every neighbourhood U of z (in S) contains
at least one point y € W, where y # .

Let U; be any open neighbourhood of x, and choose y; € W N Uy, such that y; # z. It follows
from EXAMPLE 4.2 that {y1} is closed, if S is just a Ty-space. Then Uy = Up \ {y1} is an open
neighbourhood of z, and we can choose yo € W N Uy \ {z}, i.e. y2 # = and y2 # y1.

Then consider the open set Us = Uy \ {y1,92}, etc.

In the n-th step we have an open neighbourhood

Un: n—l\{y15y27"'ayn—1}

of x, where y1, y2, ..., Yn—1 € W are mutually different, and where each of them is different from =z.
Then choose y, € U, N W, such that y,, # z, and y,, different from all the previous chosen elements

{yi, 92, ..., y2}-
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Since

Unt1 = U1t \{y1,2,.--,Yn} is open and x € Uy, 11 # 0,

the process never stops, and we have proved that any open neighbourhood of x contains infinitely
many different elements from W.

If U is any neighbourhood of x, then it contains an open neighbourhood U; of z, thus x € U; S U.
Since already U; has the wanted property, the larger set U will also have it.
Example 4.4 Let (S,d) be a metric space. For an arbitrary non-empty subset W in S, we define a
function ¢ : S — R by

o(z) = inf{d(z,y) |y € W} forxz e S.
We call p(x) the distance from x to W, and write, accordingly,

o(x) = d(z,W).

1. Let x1, xo € S be arbitrary points in S.
First show that for an arbitrary point y € W it holds that

¢(x1) < d(@1,22) + d(32,Y).
Nezxt show that
p(z1) — p(2)] < d(w1,22),
and conclude from this fact that ¢ is (uniformly) continuous on S.
2. Show that
dxz,W)=p(x) <= zeW,
where W as usual denotes the closure of W.
3. Let Ay and Ag be disjoint, non-empty closed subsets in the metric space (S,d). Show that there

exist disjoint, open sets Uy and Us in S, such that Ay S Uy and As € Us.
Hint: Consider the distance functions ¢1(z) = d(z, A1) and @o(z) = d(z, As).
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1. This example is an exercise in the triangle inequality. Let y € W and 1, zo € S. Then
o(x1) = inf{d(z1,9) | § € W} < d(z1,y) < d(z1,22) + d(22,7).
It follows from
o(z1) < d(z1,22) + d(z2,Y) for every y € W,
that
p(r1) < d(w1,22) + inf{d(22,y) | y € W} = d(x1,22) + p(22),
hence
p(x1) — p(x2) < d(z1,22).
An interchange of x; and x5 gives
o(r2) — p(z1) < d(w2,71) = d(21,72),
hence
[p(x1) — p(@2)| < d(z1, 22).

Now we can independently of the points x; and x5 € S to every € > 0 choose é = ¢ > 0, such
that

d(x1,29) < e implies that |p(z1) — p(z2)] < &,
hence ¢ is uniformly continuous.

2. Assume that ¢(z) =0, i.e.
o(x) = nf{d(z,) | y € W} = 0.
Then there exists a sequence {y,} S W, such that d(z,y,) < %, and every open ball By, (z)
of centre x and radius % contains points from W,
W N Byp(x) #0 for every n € N.
Then z € W.

Conversely, if # € W, then there exists a sequence {y,} S W, such that

1
d(z,yn) < —.
(T, Yn) -

Then
0 < p(x) =nf{d(z,y) |y € W} <inf{d(z,yn) [y € W} =0,
and hence ¢p(z) = 0.
3. Let ¢1(x) = d(x, A1) and po(z) = d(z, As). If 1 € Ay and z2 € Ag, then clearly
pa(x9) < d(x1,22) and p1(x1) < d(x1,22).

We define the open sets

U1($1)={y€5 ‘ d(xlvy)<%<p2($1)}7

U= |J Ui(a1) open, Uy2 A,
r1€AL
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and

Uz(2) = {y €S ‘ d(x2,y) < %%(332) }7

U; = U Us(xza) open, Us 2 As.
T2€A2

We shall prove that U; N Us = 0.

Indirect proof. Assume that there exists z € Uy NUsy. Then there are an x1 € Ay and an x5 € A,
such that also

z e Ul(Il) n UQ(IL’Q).

Then we get the following contradiction,

1 1 2
0 <d(xzy,x2) <d(x1,2) +d(z,22) < 3 v1(x2) + 3 wa(x1) < 3 d(z1,x2).

This cannot be true, so our assumption must be wrong. We therefore conclude that Uy NUsy = (),
and the claim is proved.

Example 4.5 Let S ={zx € R|0 <z < 1}. Consider the family of subsets T in S consisting of the
empty set O and every subset U S S of the form

U={zeR|0<z <k}
for a number k with 0 < k < 1.
1. Show that T is a topology on S.

1
2. Show that in the topological space (S, T), the sequence (xn = ?> will have every point in
n
S as limit point.

8. Ezxamine if the topology T stems from a metric on S.

1. TOP 1. Let U; ={z € R|0 < x < k;}, 9 € I. Then
UUi:{$€R|O§x<supki}€T,
iel el
because
sup{k; | i € I} €]0,1].
TOP 2. If I ={1, 2, ..., n}, then
€101
hence
ﬂUi:{x€R|0§x<Arlnin ki}eT.
i1 i=1,...,n
TOP 3. Finally, it is obvious that (), S € 7.
We have proved that 7 is a topology.
2. Let z € [0,1]. Then any open neighbourhood of z is of the form
U={yeR|0<y <k} where < k.

1 1
Itfollowsfromxn:?<k:f0rn>E—lznothatmnﬁxfornﬁoo. Since z € S is
n

chosen arbitrarily, we conclude that x,, — z for n — oo for every x € S'in 7.

3. The topology can never be generated of a metric. In fact, a metric space is automatically a
Hausdorff space, and in a Hausdorff space S any sequence (z,,) has at most one limit point. In
the present example every point of S is a limit point.
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5 Sequences

Example 5.1 Deduce the existence of a supremum from the principle of nested intervals.

We assume that if
[a1,01] 2 [ag,ba] 2 -+ 2 [an,bn] 2 -+

is a decreasing sequence of closed intervals, where the lengths of the intervals |b,, —a,| — 0 for n — oo,
then the intersection (), @y, b,] becomes just one number.

We shall prove that every non-empty bounded subset A of R has a smallest upper bound, > A.

Let A # () be bounded, i.e. there exist a; and by, such that A C [ay, by].
1
Define ¢; = 3 (a1 + b1) as the midpoint of the interval [ay, b1].

1. If z < ¢; for every x € A, then put

as = ay and by = cy.

't
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5. Sequences

2. If there exists an x € A, such that x > ¢q, we put

g = C1 and b2 = bl.

When this process is repeated, we obtain a decreasing sequence
a1, 1] 2 [az,b2] 2 -+ 2 [an,bn] 2 -+,

of intervals, where

—ai1| —0 for n — oo,

1
|bn *an| = on—1 |b1

hence by the assumption,

[an, bn] = {x0}-

D)

n=1

35
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Furthermore, a,, /" x¢ and b, \, xg. Since the construction secures that every b,, is an upper bound
of A, thus

z < b, for every z € A and every n € N,
we conclude that z( is also an upper bound of A.

Since none of the a, is an upper bound of A, because we by the construction always can find an
xn, € A, such that a, < x,, and since a,, /" xg, we infer that z( is the smallest upper bound of A,
hence xy = sup A.

Example 5.2 Let S be a topological space, and let (fy), or in more detail f1, fo, ..., fn, ..., be a
sequence of continuous functions fp : S — R, such that for all x € S it holds that

(i) fu(z) >0,
(it) fi(z) 2 fa2) 2 - 2 fule) 2 -,

In other words: The decreasing sequence of functions (f,) converges pointwise to the 0-function.
Fore >0 andn € N we set

Un(e) ={z € S|0< fu(z) < e}
1. Show that U, (g) is an open set in S.
2. Show that for fixed € > 0, the collection of sets {U,(¢) | n € N} defines an open covering of S.

8. Now assume that S is compact. Show then that for every e > 0 there is an ng € N, such that
for all n > ng it holds that

0< fulz) <e for all z € S;
or written with quantifiers,
Ve >0dng e NvneN:n>ny = VeeS:0< f(z)<e.

We conclude that under the given assumptions, the sequence of functions (f) converges uni-
formly to the 0-function.

This result is due to the Italian mathematician Ulisse Dini (1845 — 1918) and is known as DINI’S
THEOREM.

4. Is it of importance that S is compact in (3)?

1. Since every f,, > 0, and each f,, is continuous, we get

Un(e) ={z €S |0< fulz) <e} = fr~'(] —o0,e[) open.
2. Since

fi(@) > fo(z) > > fu(z) > =0,

there is to every € > 0 and every z € S an n € N, such that 0 < f,(z) <e, i.e. z € U,(g). Since
this holds for every x € S, we have

so {U,(e) | n € N} is an open covering of S, because every U, () is an open set.

Download free books at BookBooN.com

36



Global Analysis 5. Sequences

3. If S is compact, then the open covering {U,(¢) | n € N} of S can be thinned out to a finite
covering,

S C U, (e)UUp,(e)U---UU,,(g).

It remains to notice that if x € Uy, (¢), then « € U, (¢) for every n > ng, hence
Uno(€) S Unga() S -+

This follows from f,,1+1(z) < fn(z) < e. Then we get for n; < ng < --- < ng,
S=Un(e)UUp, U---UUy,, () = Uy, (g),

hence
S={z eS| fn(x) <e}.

If n > ny, then it follows that
0 < fulz) < fo,(2) <,

hence
0< fn(z) <e for n > ny,

and we have proved Dini’s theorem.

Figure 15: A principal sketch of the graph of f,.

4. The assumption of compactness is of course important. In order to see this, we must construct
an example, in which S is not compact, where the f,, > 0 are all continuous and tend pointwise
and decreasingly towards 0, and where the convergence is not uniform.

Consider S = [0, o[, which clearly is not compact. We put

0, for z € [0,n — 1],
falx)=¢ z—n+1, forzxen—-1,n, neN
1, for € [n, 00|,

Then every f,, > 0 is continuous and f,(z) \, 0 for n — oo for every x € S, so the convergence
is decreasing. Also, to every ng € N there exist an n > ng and an « € S, such that f,(z) = 1.
This holds for all n > ng and all x > n, and the convergence is not uniform.

Remark 5.1 The example above illustrates the common observation in Mathematics, that if
something can go wrong, it can go really wrong!. ¢
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Example 5.3 Let f, g: [a,b] — R be continuous functions defined in a closed and bounded interval
[a,b]. Assume that f(z) < g(x) for every x € [a, b].
Show that

K={(x,y) eR’|a<az <D, f(z) <y < g(a)}

is a compact subset in R2.

0.8

0.6

0.4

0.2

Since [a, b] is compact, and f and g are continuous, f has a minimum, f(z;) = A, and ¢ a maximum
g(z2) = B, and we infer that

K ={(z,y) eR*|a <z <b, f(z) <y <g(@)} S [a,0] x [4,B],
proving that K is bounded.

Furthermore, K is closed. This is proved by showing that the complementary set is open.
There is nothing to prove if (z,y) € R? \ K satisfies one of the following conditions,

i) x<a, @) x>b, i) y<A, i) y>B.
Let
(w0, 90) € ([a,b] x [A, B]) \ K.

We may assume that yo < f(xg), because the other cases are treated analogously. Using that f is
continuous we can to

1
€=3 {f(z0) —yo} >0
find a § > 0, such that
|f(z) — f(zo)| <€ for | — xzo| < 6 and = € [a, b].

Then |xg — d, 20 + [ X Jyo — &,90 + €] and K are disjoint sets, hence the complementary set of K is
open. This implies that K is closed.

We have proved that K is closed and bounded inR2, so K is compact.
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Example 5.4 Let K1 2 Ko 2 --- 2 K, 2 -+ be a descending sequence of non-empty subsets in a

Hausdorff space S. Show that the intersection of sets (\,—, K, is non-empty.

Indirect proof. Assume that (,_; 00K, = 0, and consider the subspace topology Tx of K = Kj.
Then

U,=K\K, abeniTk.

We have

o0

v, = UK\ K = K\ () Ko = K.

n= n=1

where we in the latter equality have applied the assumption that (-, K, = (. Since K is compact
in a Hausdorff space, and Uf;l U,, is an open covering, and

I=U1 ST, S CUC -,

we can extract from this covering a finite covering (with n; < ng < -+ < ny),
k
K=K, C UU,, =U,, =K\ K,,.

Now, K,, € K and K = K \ K,,, so K,, = 0 contradicting the assumption that none of the K, is

kK =

empty.

Hence our assumption is wrong, and we infer that

ﬂ K, #0.
n=1
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Example 5.5 Let S = NU {0} be the set of non-negative integers. For every natural number n € N
we define a subset U, in S by

U,={n-peS|ip=0,1,2,... }.
1. Show that for all n, m € N, the intersection U, N Uy, has the form Uy for a suitable k € N.

Consider the family T of subsets in S which consists of the empty set ) and all subsets U in S that
can be written as a union of sets from {U, | n € N}, i.e.

U= U..
acA

2. Show that T is a topology on S.
(The system of subsets {U,, | n € N} in S is called a basis for the topology 7.)

3. Show that the sequence (x,, = n!) will converge to every point in the topological space (S, T).

1. Let k € N be the smallest number which can be divided by both m and n. Then we get

U,NU,, =U.

2. The result of 1. implies that finite intersections of sets of the type U,, again can be written as an
Ux. When we form the topology by adding any union of sets of type Uy as open sets, supplied
by 0, it only remains to note that the whole space S = U; trivially belongs to 7. This proves
that 7 is a topology.

3. Let yo € N. Then the smallest open set, which contains yo, must necessarily be Uy, .
If we choose ng € N, such that ng! = yo - k for some k € N, it follows that n! € Uy, for every
n > ng.

If instead yg = 0 € S, then every Uy is a neighbourhood. Choose ng € N, such that ng! = & - p,
p € N, and we obtain that n! € Uy for n > ng.

This implies by the definition of convergence in topological spaces that (n!) converges towards
every point in S.
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6 Semi-continuity

Example 6.1 Let S be a Hausdorff space. A function f: S — R is said to be lower semi-continuous,
if the following condition is satisfied:
For every x € S and every € > 0 there exists a neighbourhood N and an x in S, such that

fx)—e<fly)  foryeN.

1. Show that a lower semi-continuous function f :S — R is bounded from below on every sequen-
tially compact subset K in S.
HINT: You can prove this indirectly.

2. Show that a lower semi-continuous function f : S — R assumes a minimum value on every
sequentially compact subset K in S.
HiNT: Construct a sequence (z,) on K for which

lim f(zy) = inf f(K),

n—oo

and make use of this to determine a point zg € K, such that

f(zo) = inf f(K).

(In a suitable setting this is the so-called direct method the calculus of variations, and the
sequence (z,) is called a minimizing sequence.)
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Global Analysis 6. Semi-continuity

1. Indirect proof. Let K be sequentially compact. We assume that f is not bounded from below
on K. This means that we can find points z, € K, such that f(x,) < —n, n € N. We may
assume that all (x,,) € K are mutually different.

Since K is sequentially compact, (z,) has an accumulation point o € K.

Since f is lower semi-continuous in zy, we can to every € > 0 find a neighbourhood N of zq in
S, such that

flzo) —e < f(y) for all y € N.

Since g is an accumulation point, there are (infinitely many) z,, € N for which
—n < f(zg) —e.

Since also x,, € N, it follows that
flzn) < —n < f(xg) — e < f(zn),

which is a contradiction.

We have proved that every lower semi-continuous function f :.S — R is bounded from below on
every sequentially compact set.

2. We infer from the definition of inf f(K) that there exists a sequence (z,) € K, such that

lim f(z,)=inf f(K).

n—oo

The sequence (z,,) itself needs not be convergent, but since it has an accumulation point zg € K,
we can extract from it an subsequence which converges towards xg. The image of the sequence
will still converge towards inf f(K), so we may already from the beginning assume that (z,) —
Zo-

By assumption, f is lower semi-continuous in xg, so to every € > 0 there is a neighbourhood N
of xg, such that

flzo) —e < f(y) for every y € N.

Using that N is a neighbourhood of xy and that x,, — x( for n — oo, we infer that there exists
an m, such that x, € N for all n > m, thus

f(zo) —e < f(zn) for all n > m.
The right hand side is convergent for n — oo, hence

flzo) —e < lim f(xo) =inf f(K) for everye > 0.

n—oo

Finally, we get by taking the limit € \ 0,
inf f(K) < f(zo) < inf f(K),
proving that

f(zo) = inf f(K)  [=min f(K)].
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Example 6.2 Let f : R — R be a differentiable function with bounded differential quotient. Show
that f is uniformly continuous.
HINT. You can use the classical Mean Value Theorem.

The differential quotient D f(z) is bounded, so

sup|Df(z)| = C < +o0.
z€R

Using the Mean Value Theorem we get for any x and y that there exists an z between x and y, such
that

f)—fl@)=Df(z) - (y—2), z==z(zy),
hence
) = f@)=[Df)] ly—al<C-|y—al.

€
To any € > 0 we choose § = —, such that

C

ly — x| <o implies that |f(y) — f(z)| <e,
where ¢ is independent of x and y. This means that f is uniformly continuous.
Example 6.3 A subset K in a metric space (S,d) is called precompact if for every e > 0 there exist
finitely many points x1, ..., x, € K such that

K S B(z1)U---UB:(zp).

1. Show that a subset K € R™ in the space R™ (with Euclidean metric) is precompact if and only
if it is bounded.

2. Let f : X — Y be a mapping between the metric spaces (X,dx) and (Y,dy), and let K € X

be a precompact subset in X. Show that if f is uniformly continuous in K, then the image set
f(K) S Y is precompact inY .

1. Let K be precompact, and put € = 1. There are points x4, ..., zp, such that
K C Bi(z1)U---UBi(xp).
Defining
R = max{d(z1,z;) | j=1, ..., p}+1,
it follows that Bi(z;) & Bgr(z1) for every j € {1,...,p}, thus
K C Bi(x1)U--- U Bi(xp) € Br(1),

and K is bounded.

The phrase “K bounded” means that “K can be shut up” in a ball. Therefore, in order to prove
the claim in the opposite direction it suffices to show that whenever a ball Kg(x¢) and an € > 0
are given, then there exist finitely many points z1, ..., x, € S, such that

Br(x0) & Be(21) U Be(z2) U -+ - U Be(zp).
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Remark 6.1 It is at this point that we use that the metric is Fuclidean. In general, the claim
is wrong for metric spaces, which is illustrated by the following example.

Let X =R be equipped with the metric

|1 forx#uy,
d(m,y)—{ 0 forzx=y.

A routine check shows that this is indeed a metric. Then R € B;1(0) is clearly bounded (the
radius is 1).
If 0 < e <1, then B.(z) = {x}, and

R = {s}

is obviously not precompact.

This example shows that we must require more of the metric — it is quite natural her to assume
that it is Euclidean. ¢

We consider R? with the usual Euclidean metric. Choose any € > 0, and assume that
K g [al,bl] X [ag,bg} X X [an,bn].
Each edge [a;, b;] can be divided into at most

NG

o |B — j — aj| + 1 intervals of length

2
vn

This implies that

M<1

< @ (\/ﬁ)”gﬂbj —aj| +1}

n-dimensional cubes cover K. Choose the centre of each of these cubes as centre of balls of
radius €. Then every cube is again covered by a finite number of balls, and the claim follows.

2. If f is uniformly continuous on a precompact set K, then § = §(e) depends only on € > 0 and
not on z, y € K. Hence, if

dx(o,y) <0(e),  then  dy(f(@), f(y)) <&,

and thus

(2)  f(Bxs(x)) & By.e(f(2))-

The set K is precompact, so there exist zi, ..., x, € K, such that
K € Bxs(x1)U---UBx s(zp).

It follows from (2) that

f(K) f(Bxs(z1)) U U f(Bxs(xp))

By (f(z1)) U+~ U By (f(zp)) -

N 1N

Since this holds for every £ > 0, we conclude that f(K) is precompact.
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Example 6.4 Let T be a point set with more that one element equipped with the discrete topology.

1. Show that a topological space S is connected if and only if every continuous mapping f : S — T
18 constant.

2. Let {W; | i € I} be a family of connected subsets in a topological space S, such that for every
pair of sets W; and W; from the family it holds that M; N W; # 0. Then show that the union
Uier Wi is a connected subset in S.

1. Let f: S — T be a continuous function, which is not constant, with e.g. {¢t1,t2} £ f(5). Since
{t1} and {t2} are open, both f°~1({t;}) and f°~1({t2}) are open, disjoint and non-empty, and
S is not connected.

Hence we get by contraposition that if S is connected, then every continuous function f: S — T
is constant.

If S = 57 USs is not connected, i.e. S; and Sy are open, non-empty and disjoint, then we can
define a continuous function f:S — T by

| t1, forazeS,
flz) = { ty, for x € Ss.
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In fact,

) =5 and  fN({t2}) = Sa,

and
fHU) =0 for U S S\ {t1,t2}.

Clearly, f is not constant, and the claim is proved.

2. Since f; : W; — T is continuous, so
fi(ﬂi):tiET fOI‘.TEWi,
and we infer that if

I U W, =T is continuous,
iel
then f(z) = fi(x) =t; for x e W;, i € I.
Since there is an x € W; N W;, we must have
f(@) = filz) = ti = fi(x) = t;,
thus ¢; = t; for all 4, j € I. This implies that the constant functions
f: U W, —-T
iel

are the only continuous functions, and we conclude from 1. that | J,.; W; is connected.

iel
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Example 6.5 Prove the following theorem: Let M be an arbitrary subset in the number space R
with the usual topology, and let {U; | i € I} be an arbitrary system of open sets in R¥ that covers
M. Then, either there exists a finite subsystem {U;,,...,U; }, or, there exists a countable subsystem
{Ui,, Uip,..., Ui ,...} that covers M.

The theorem is due to the Finnish mathematician Ernst Lindelof (1870-1946), and it is called Lin-
deldf’s covering theorem.

HINT: consider the following system of open balls in R¥:

B.(z) | r € RT is rational;x € R¥ has rational coordinates}.

We mention without proof that this system is countable.

Once the hint is given the example becomes extremely simple. In fact,
o0
RE(J{B(x)|re QQ*xeQ"} = By,
n=1
where Q denotes the set of rational numbers.

Each element U;, i € I, can as an open set be written
U; = U B,, where I; S N, thus I; is countable.

nel;

Since {U; | i € I} covers M, there exists a subsystem {B,, | n € J}, J € N, which also covers M, (e.g.
J = UiGI Ii)-

The subsystem {B,, | n € J} is finite or countable, and every B,, is contained in some U, for n € J.
Hence, we choose {U;, | n € J}, such that

mc|JB. S U,

neJ neJ

(finite or countable union).
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7 Connected sets, differentiation a.o.

Example 7.1 Let E be a subset in the topological space S. Show that if E is connected, then the
closure E is also connected.

Let T contain at least two points, and let T' be equipped with the discrete topology, thus every point
{t} C T is both open and closed.

Let ¢ : S — T be a continuous mapping. Since ¢\ : £ — T is continuous and E is connected, we
conclude that ¢(z) =t € T, x € E is constant on E.

We get E by adding the boundary OF to E, thus E is the set of all contact points. Therefore,
p(x) =ty € T is constant on F, because we get the values on OF by continuous extension, i.e.

T, — 29 € E implies (xg) = limp(x,) = limtg = to.
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Example 7.2 Let (S,d) be a metric space. For an arbitrary pair of non-empty subsets A and B in
S, we define the distance from A to B, denoted d(A, B), by

d(A,B) = inf{d(z,y) |z € A, y € B}.
1. As in EXAMPLE 4.4 we define for every x € S the distance from x to B by
d(z, B) = inf{d(z,y) | y € B}.
Argue that for arbitrary points x € A and y € B it holds that
d(A,B) <d(z,B) and inf{d(z',B) |2’ € A} <d(z,y).
Utilize this to show that
d(A,B) = inf{d(z,B) | z € A}.
2. Show that if A is compact, then there exists a point ag € A such that
d(A, B) = d(ag, B).

HINT: You can use that the function ¢ : S — R, defined by ¢(x) = d(z, B), is continuous.
Next show that if B is also compact, then there exists a point by € B such that
d(A, B) = d(ao, bo).

3. Let K be a compact subset in S contained in the open set U in S, i.e. K S U S S. Show that
there exists an r € R, such that B.(x) S U for every x € K.

d(A,B)

d(x,B)

1. It follows from d(z, B) = inf{d(z,y) | y € B}, that
d(z,B) =d({z},B) > d(A, B) for every = € A,

and the claim is proved.

Furthermore,
d(z,B) = inf{d(z,y) | y € B} < d(x,yo), for yo € B,
o

inf{d(z',B) | 2’ € A} < d(z,B) <d(xz,y) forze€ Aandye B.
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It follows from these two inequalities that

inf{d(z', B) | 2’ € A}

IN

inf{d(z,y) |z € A, y € B}
= d(A,B) <inf{d(z,B) |z € A},

hence we have equality

d(A,B) = inf{d(z,B) | z € A}.

2. Now, ¢ : S — R, given by ¢(z) = d(x, B), is continuous, and A is compact. Therefore, p(x)
attains its minimum at a point ag € A, so

v(ag) = d(xg, B) = inf{d(z, B) | z € A} = d(A, B).

If also B is compact, then use that ¢ (y) = d(ao,y) is continuous, so there exists a by € B, such
that

d(ag,bo) = inf{d(ap,y) |y € B} = inf{d(z,y) | x € A, y € B} = d(A, B).

3. It follows from K € U that K N (S\ U) = (. The mapping
p(r) = d(z,5\U)
is continuous, and since K is compact, we can by (2) find a point ¢ € K, such that
d(K,S\U) =d(zo+,5S\U) >0,

because zg ¢ S\U. (Strictly speaking we shall choose R > 0, such that B = (S\U)UBgr(x¢) # 0,
thus B is closed and bounded, etc.)

Then choose r €]0,d(K, S\ U)[, and we have
B (z)US\U =10 for all x € K,
hence

B.(z) CU for all x € K.

Download free books at BookBooN.com

50



Global Analysis 7. Connected sets, differentiation a.o.

Example 7.3 Let E = C*([0,27],R) be the vector space of differentiable functions f : [0,27] — R
of class C*. For f € E we set

1£llo = sup{[f(z)[ | = € [0, 27]},
1£1ly = sup{|f(@)| + | f"(x)| | = € [0, 2x]}.
1. Show that || - |lo and || - |1 are norms in E.

Define the linear mapping D : E — E by associating to f € E the deriwative f' € E of f, i.e.

D(f)=f  for f€E.

2. Show that for every n € N there ezists a function f, € E for which || fnllo =0 and ||D(fy)|lo = n.
Utilize this to show that D : E — E is not continuous, when E is equipped with the norm || - ||o.

3. Show that D : Ey — Ey is continuous, when Fy is E equipped with the norm || - |1 and Eq is E
equipped with the norm || - |o-

1. Obviously, || f]lo > 0, and if

[fllo = sup{|f(2)| | = € [0,27]} =0,

then f(z) =0 for every x € [0, 2x], thus f = 0.
Furthermore,

lefllo = sup{laf(z)| | = € [0,27]} = |afsup{|f(2)| | = € [0, 27]} = |al]|f]lo-

Finally, we get concerning the triangle inequality

If+gllo = sup{[f(z) +g(@)Il | = € [0,27]} <sup{|f(z) + |g(2)| | = € [0, 27]}
sup{|f(z)[ | z € [0,27]} + sup{[g(z)| | € [0,2x]} = [|f]lo + llgllo-

IN

Summing up we have proved that || - ||p is a norm.

Then | flly = || fllo = 0. If

[fllx = sup{[f(z)| + [f'(2)| | = € [0,27]} =0,
then

1f(2)| + |f'(z) =0  for every z € [0, 2n].

This implies that || f(z)| = 0 for every = € [0, 27, i.e. f =0.
Furthermore,

leeflln = sup{|eef () [+ ]eef ()] | & € [0, 27]} = |afsup{|f(2)[+|f' ()| | = € [0, 27]} = |af-[| f]l1-}

Finally,

If + gl = sup{lf(z) +g(x)| + |f'(2) + ¢'(z)] | = € [0,2x]}
sup{|f(z)| + |f'(z)| | = € [0,27]} + sup{|g(x)| + |¢"(x)| | = € [0,27]} = || f]l1 + llgllx-

IA

We conclude that ||.||; is also a norm.
2. The form of the interval [0, 27| indicates that we shall think of trigonometric examples. Choosing
fn(x) = sinnez, x € [0, 2],
it follows that f, € E and

[l (x) =n-cosnz, z € [0, 27],

Download free books at BookBooN.com

51



Please click the advert

Global Analysis 7. Connected sets, differentiation a.o.

thus
I fnllo = sup{|sinnz| | x € [0,27]} =1,
and

ID(fr)llo = sup{n|cosnz| | x € [0,27]} = n.

1
Clearly, the sequence g,, = — f,, converges towards 0, because
n
1
lgnllo=—=—10 for n — oo.
n

1
The image sequence ||D(gn)llo = — - n = 1 does not converge towards 0, and D : Ey — Ejy is
n

not continuous.

3. The claim follows from the estimate

Do = sup{|f'(=)] | = € [0, 2]}
sup{|f(z)| + [ f'(2)| | = € [0, 27} = [ /-

IN

The mapping D is linear, so it suffices to prove the continuity at 0:
To any given € > 0 we choose § = ¢ > 0. If || f||1 < d = ¢, then ||D(f)llo < ||fl1 < &, and we
have proved that D : F; — Ej is continuous.

Remark 7.1 The example shows that the same mapping D : £ — E can be continuous in one
topology and discontinuous in another one. Both norms ||||o and | - ||; are classically known. ¢
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8 Addition and multiplication by scalars in normed vector
spaces

Example 8.1 Let V be the space of continuous functions f : R — R, such that f(x) — 0 for |x| — oo.
For a function f € V' holds, in other words

Ve>0daeR"WVzeR: |z >a = |f(z)|<e.

Define the operations ‘addition’ and ‘multiplication with scalars’ in V' by the obvious pointwise defini-
tions.

1. Show that V is a vector space.
2. Show that every function f € V is bounded.

Making use of (2), we can define

I/l =sup{|f(@)| [z € R} for feV.

3. Show that || - || is @ norm in V.

1. If f,g eV and a € R, then f+ a-g¢g: R — R is continuous, and
fl@)+a-g(z) > 0+a-0=0  for |z| — oo,
so f+a-geV,and V is a vector space.

2. Let f € V, and choose e.g. ¢ = 1. There exists an a > 0, such that |f(z)| < 1, whenever |z| > a.
The residual set [—a, a] is a compact interval. The function f is continuous, so |f| has a maximum
A on [—a,a]. Then

[f[l = sup{|f ()| | = € R} < max{1, A} < oo,

and we have proved that f is bounded.

3. It follows from (2) that || f]| < oo for every f € V. The rest is well-known: ||f|| > 0, and if

171l = sup{[f(2)[ | € R} = 0,

then f(xz) =0 for every z € R, hence f = 0.
Furthermore,

lec- fll = sup{le f(2)[| | # € R} = |afsup{|f(2)| | z € R} = |o] - [| f]];

and

sup{|f(z) + g(z)| | « € R} < sup{|f(z)| + |g(z)| | # € R}
sup{|f(z)| | © € R} +sup{lg(2)| | x € R} = [[f]| + [lg]l-

If +4l

IN
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Global Analysis 8. Addition and multiplication by scalars in normed vector spaces

Example 8.2 Let V be the space of sequences
x=(a1,00,...,04,...)

of real numbers c; € R in which at most finitely many o; # 0.
Define the operations ‘addition’ and ‘multiplication with scalars’ in V' by the obvious coordinate-wise
definitions. Furthermore, set

o0
lzll = lall.
i=1

1. Show that V is a vector space and that || - || is a norm in V.

2. Consider an infinite series of real numbers

o0
S
i=1
(There is no condition that at most finitely many a; # 0.)
Define the sequence (x,,) in'V by 1 = (a1,0,0,...), 22 = (a1,a2,0,...), and in general
Tn = (a1,a2,...,0,,0,...).

Show that the series o~ | |a;| is convergent, if and only if the sequence (x,) is a Cauchy sequence
(fundamental sequence) in the normed vector space V, i.e.

Ve>0dng e NVn, keN:n>ng = |optr —2nl <e.

8. Give an example of a Cauchy sequence in the normed vector space V' that has no limit point in
V.

1. Let x = (a1, 0, ...,04,...) € Vand y = (B1,082,.--,8i,...) €V, and k € R. Then
x‘i'ky:(041+kﬁl,0[2+k62,-~-,0[i+kﬁi,--~),

and since x, y € V, there exists an N, such that a; = §; = 0 for every ¢ > N. Then also
a; + kB; =0 for every ¢ > N, hence x + ky € V, and V is a vector space.

It is obvious that |z|| > 0, and if ||z| = Y ;2 || = 0, then all a; = 0, thus z = 0.
Furthermore,

k)l =) Ikau| = kI Y leil = |K] - [|]
=1 =1

and
lz +yl =D lai+ Bl <> leil + Y 16i] = Il + iyl
i=1 i=1 i=1
We have proved that || - || is a norm.

2. Assume that Y-, |a;| < oo is convergent. This means that

Ve>0dN: Z|ai| <e.
i=N

Then for every n > N and every k € N,

n+k [e%)
|nir —zall = D Jaid < Jail <,
i=n+1 i=N
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and (x,) is a Cauchy sequence.
Conversely, if (z,) is a Cauchy sequence,
Ve>0dng e NVn, keN:n>ny =

then for n = ng and every k € N,

no+k no+k
Z la;] <e, thus lim Z la;| < e,
i=no+1 koo, it
or
oo
Z ‘a,l <e.
i1=no+1
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Global Analysis 8. Addition and multiplication by scalars in normed vector spaces

We conclude that

o0 no oo
Sl - led| = Y i<
i=1 i=1 i=ng+1

thus Y77, |a;| < oo, and

&S] k
Z la;| = Z Z |a] is uniquely determined.
i=1

keN =1

1
3. Choose a; = —- Then
i

;ﬁ:%

is convergent, and (z,) is a Cauchy sequence in V.
The limit point is

11 1
(1,1757...,2_—2,...) ¢V,

because every coordinate is > 0.

Example 8.3 Let V be a finite dimensional, normed vector space with norm || -||. Let L :V — V
be an arbitrary linear mapping. Show that there exists a unit vector xg € V, i.e. ||xgl| = 1, such that
|IL(z0)|| = ||L||, where ||L|| is the operator norm of L, i.e.

ILI} = sup{[[L(@)|| | [l«]| = 1}.

Show by an example that this does not hold in general, when V has infinite dimension.

Any finite dimensional and normed vector space V' is isomorphic with (R™, || - ||*) for some n and some
norm || - [|*. In particular, the closed unit ball in V' is compact.
Since L : V — V is continuous, there exists a point zo from the compact set {z € V | ||z|| = 1}, such

that ||zg|| = 1, and such that
L] = sup{[IL(2)[| | [lz]} = 1} = [|L(zo)]-

Then let V' be the infinite dimensional vector space with consists of all summable sequences (z,,) of
the norm
oo

H(In)”1 = Z |7,

n=1
and let L : V — V denote the linear mapping which is degenerated by

L(e,) = (1 - 1) €n, n € N.

n

Clearly, ||L|| < 1, and we conclude from

1
lim [|L(ep)[1 = lim (1 - _> _ 1,

n— o0 — 00 n

that || L|| = 1.
Finally, if ||(z)|l1 = Y.y |2n| = 1 is any unit vector, then there exists an ny € N, such that |z,,| # 0.
Then we have for every unit vector (x,,), ||(z,)|1 =1 that

2@ =3 (1= 5 ) loal < 3 fonl = 1.

and || L((zy))|l1 < 1 for every unit vector (z,), so the claim does not hold in general for infinitely
dimensional spaces.
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Global Analysis

9 Normed vector spaces and integral operators

Example 9.1 Let C([0,1],R) be the vector space of continuous real-valued functions in the unit in-
terval [0, 1]. For a continuous function f :[0,1] — R we set

1l = / | (x)] da.

1. Show that || - |1 s a norm in C([0,1],R).

We now equip C([0,1],R) as a normed vector space with the norm || - ||1 and define the function

1
1:C(0,1,R) =R by I(f):/of(x)dx.

2. Show that I is a continuous linear function.

3. Determine the operator norm of I.

4. In C([0,1],R) equipped with the norm || - ||1, consider the sequences (f,) and (gn) defined by

1
l—nzx for0<ax<—,
n
fu(z) = 1
0 for — <z <1,
n
9 1
n—n‘z for0<z< —,
n
gn(T) =
1
0 for — <z <1.
n

Ezxamine the convergence of each of these sequences and, in case of convergence, determine the
limit function.

. Obviously, || f]l1 > 0. It follows from f being continuous and

1
1711 =/0 ()] dz =0,

that |f(x)] = 0 for every z, so f = 0.

Remark 9.1 We give a simple indirect proof. Assume that |f(z¢)| > 0 for some x¢ € [0,1].
Then there are a constant ¢ > 0 and an interval J with xy € J of length € > 0, such that
|f(x)] > ¢ for every x € J. Then we have the estimate

1
||f|\1=/0 If(:v)ldmz/J\f(x)ldw20-5>0,

and the claim follows. This proof should be well-known to the reader, so it is only given here
for completeness in a remark. ¢

Furthermore,

1 1
la- £l :/O o+ f(z)] dz = \a|/0 @) dz = o] |||,

and

1 1 1
I +glls = / (@) + ga) de < / @) de + / l9(@) dz = | fl1 + gl

and we have proved that || - ||; is a norm.

9. Normed vector spaces and integral operators
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2. It follows from

() = \/ fa)de| < / @)l dz = 7]

that I is continuous.
(To any € > 0 choose § = ¢, such that if || f||1 < d =&, then [I(f)| < [|f|1 < &).

3. Tt follows from the estimate in (2) that

11} = sup{[L(N] [ [f1lx = 1} < sup{[[ [l [ [[fll. =1} =1,

thus [[I]| < 1.
On the other hand, if f(z) > 0, then

()| = / f(@)dz = | £,

and |[I]| > 1.
We conclude that || I|| = 1.

Figure 16: The graph of f5(x).

4. A simple figure shows that both (f,) and (g,) converge pointwise towards 0 for x €]0,1], so 0
is the only candidate of a limit value. We infer from

1 1 1
||fn70||1:||fn||:5'1'5:%4)0 for n — oo,
that f, — 0 for n — oo in the norm || - ||;.
This goes wrong for (gy,,):
1 1 1
lgn — O = llgall = 5 -m = 1,

which does not converge towards the only possible limit value 0 for n — oo, and (g,) is not
convergent.

Example 9.2 Let f : E — F be a mapping between normed vector spaces E and F which is differ-

entiable at 0 € E and has the property f(ah) = af(h) for all « € R and all h € E. Show that f is
linear.

When f is differentiable at 0 € F, then there exists a linear mapping Df(0) : E — F', such that

f(x) = f(x) = f(0) = Df(0)x + e()||z| & for alle x € E,
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where we have used that f(0) = f(0-0)=0- f(0) = 0.
Insert a(x + y) instead of z. Then

af(r+y) = flax+ay)=Df(0)(ax +ay) +e(a(z +y))l|la(z + y)l| &
= aDf(0)z+aDf(0)y +e(a(z +y)) - |al |z +y &

When this identity is divided by « # 0, we get with another e-function,

fle+y) = Df(0)z+Df(0)y +e(a(z +y)) - [l +ylle

It follows by taking the limit o — 0 that

fx+y) = Df(0)z+ Df(0)y.

An analogous, though simpler argument shows that

f(x)=Df(0)z  and  f(y) = Df(0)y,

thus
flx+y)=Df(0)x+ Df(0)y = f(z) + f(y)-
Student Student Money A Happy
Discounts Events Saving Advice Days!
Wealthystudem CO.UK
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Global Analysis 9. Normed vector spaces and integral operators

Finally,
fle+My) = f(z) + f(\y) = fz) + Af(y)-

This holds for every z, y € E and every A € R, so we have proved that f is linear.

Example 9.3 Let C([0,1],R) be the vector space of continuous functions f : [0,1] — R equipped as a
normed vector space with the norm

[f]l = sup{[f () [ 0 <z <1}

Let ® = ®(z,y) : [0,1] x [0,1] — R be a continuous function in two variables defined in the square
[0,1] x [0,1] in R%. Assume that ®(z,y) > 0 for all (z,y) € [0,1] x [0,1].
Define the function ¢ = o(x) : [0,1] = R by

p(x) = sup{®(z,y) [ 0 <y < 1}.

For f € C([0,1],R) we define the function fo = fo(y) :[0,1] — R by

f@(y)Z/O O (x,y)f(z) dr.

1. Show that for every € > 0 there exists a 6 > 0 such that

(a) ®(z0,y) —€ < O(z,y) < D(z0,y) + ¢ for |x —xo| <6 and ally € [0,1].
(b) |®(z,y) — P(z,y0)| <& for |y —yo| <& and all z € [0,1].

Make use of this to show that the functions ¢ = p(z) and fo = fo(y) are continuous.
Since fo € C([0,1] x R), we can define the mapping

L:C([0,1,R) = C([0,1,R) by L(f) = fe.
The mapping L s called an integral operator with kernel ®.

2. Show that L is a continuous linear mapping.

3. Show that

iz < (| (@) iz ) 1

for all f € C([0,1],R).

4. Show that the operator norm for L is given by

1
21 =sw{ [ o) o
0

Ogygl}.

1. The mapping ® is continuous on the compact set [0, 1] x [0, 1], hence ® is uniformly continuous,
thus to every € > 0 there exists a § > 0, such that if (zo,y0) and (z,y) € [0,1] x [0, 1] satisfy the
conditions

|z — x| < & and ly — yo| < 9,
then
[@(z0,50) — P(z,y)] <e.
If in particular, y = yo, then of course |y — yo| = 0 < §, and it follows that

if |x — x| < 6, then |®(zo,y) — (z,y)| < &,
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which is also written

O(zo,y) —e < ®(x,y) < B(xo,y) +¢  for |z — x| <6, y €[0,1].
When we repeat the argument with |y — yo| < § and x = x¢ € [0, 1], we get

[@(z,y) — ®(x,p0)| <& for [y —yo| < and z € [0,1].
It follows from the estimates

D(z9,y) — e < P(z,y) < D(xo,y) +¢
for |z — xzo| < 0 and y € [0,1] that

sup{®(z0,y) |y € [0,1]} —e < sup{®(z,y) |y € [0,1]}

< sup{®(zo,y) |y € [0,1]} +e¢,

and then we use the definition of ¢ to imply that

p(r0) — & < p(x) < (o) + &,

thus |p(x) — ¢(xg)| < €, which holds whenever |x — xzg| < d. This proves that ¢ is continuous.

If |y — yo| < I, then we get the estimates

Foly) — falwo) = / (B(x.y) — B(z,90)} f(z) da

< / B (2, y) — B(z,p0)] - |/ (x)] da

1
< / F@)dz = |fl]s -

This implies thatfe : [0,1] — R is continuous.

2. Clearly,
L(f +g) = / B, y) () + Ag(x)} da
- / B, y)f () dic + A / B(z,y)g(x) dx
0 0

= L(f)(y) + A\L(g)(y),

hence L(f + Ag) = L(f) + AL(g), and the mapping L is linear.
Furthermore, |®(z,y)| has a maximum, ||®||» pa [0,1] x [0,1],

[@]loc = sup{[®(z,y)[ | (z,y) € [0,1] x [0,1]},

because @ is continuous on the compact set [0, 1] x [0, 1]. Then

1L = sup{|L<f><y>|os@/s1}:sup{]/01¢<x,y>f<x>dx ] Oéyﬁl}
< sup{/01|¢<x,y>|-f<x>|dx 05y31}
< sup{/olnqwoowf @ [0yt = ol

If ® =0, then L(f) = 0 which is trivially continuous.
If & # 0, then ||®|/o > 0. Choose to € > 0, the ¢ by

S
120

If || fI| <9, then ||L(f)|| < e, proving that L is continuous at 0. Since L is linear and continuous
at 0, it is continuous everywhere.
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3. In this case we use the estimate above in the following way:

LA

IN

1 1
su]D{/0 ®(z,y)| - |f(x)| dx ogygl}g/o sup{|®(z,y)| | 0 <y < 1} - ||f|| do

([ ewa) st

4. From ®(x,y) > 0, and

1
L) = sup{/o B(a,y) do ogygl}snLn

1
= sup sup{/ O(x,y) f(z)dx Ogygl}
IFl=1 0
1
< sup{/ O(z,y) dx Ogygl},
0

(because |f(z)| < 1), follows that

1
1] = sup{ | ewyas
0

0§y§2}.
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Global Analysis 10. Differentiable mappings

10 Differentiable mappings

Example 10.1 Let U be an open set in a normed vector space E. A real-valued function f:U — R
is said to have a local maximum (minimum) at a point xg € U if there exists a neighbourhood N € U
of xo such that f(x) < f(xo) [f(z) > f(xo)] for allz € N.

1. Suppose that the function f : U — R is differentiable at the point xy € U. Prove that for
each fized h € E, there exists an r > 0 such that the function g(t) = f(xo + th) is defined for
t €] —r,r[ and is differentiable at 0 with derivative ¢’'(0) = D f(zo)(h).

2. Suppose that the function f : U — R is differentiable at the point o € U and that f has the local
mazimum (minimum) at xo € U. Prove that the differential of f at o is zero, i.e. D f(xo) = 0.

1. When f : U — R is differentiable at zo € U, then
f(@o +h) = f(zo) = Df(xo)(h) +e(h)||hll,
hence
9(t) = f(xo +th) = f(xo) +t- Df(xo)(h) +e(th) - t|[h].
Then g(0) = f (), and
g9(t) = g(0) =t - Df(xo)(h) +t - e(th)|[hl],

hence

lim %g(o) = Df(wo)(h) + lim e(th) - || = Df (x0)(h),

t—0

ie. (0) = Df(wo)(h)
2. Assume e.g. that f(x) < f(zo) for every x € N. (Analogously, if f(z) > f(z¢)). Then

0> f(xo +h) — f(xo) = Df(xo)(h) +(h)|nl,

hence

and

SO

We get that D f(zg) = 0, because h/||h| is an arbitrary unit vector.
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Example 10.2 Let H denote a vector space with inner product {-,-) and associated norm ||-| defined
by ||z|| = \/(z,z) for x € H. (Example: H = R"™ equipped with the standard inner product (z,y) =
2?21 z:Y;.)

Let E denote a finite dimensional proper subspace of H and let u € H be a fized point in H outside
E.

Define the function f: E — R by

f(@) =z —ul* = (z —u,x — u) forx € E.
1. Prove that f is differentiable at every point x € E with differential Df(x) : E — R given by

Df(z)(h) =2(x —u, h) forallh € E.

2. Prove that the differential of f is zero at exactly one point xg € E.
HinT: The differential of f is zero at zg € F, i.e. Df(xzp) = 0, if and only if the vector zo — u
is orthogonal to F.

x Il u

1. We shall only rearrange a little for =, h € E,

fl@+h)—fle)=(@+h—u,c+h—u)—(x —u,z—u)
={((z—uw)+h(z—u)+h) —(r—uz—u)
={{x —u,x —u)+2(x —u,h) + (h,h)} — (. —u,z — u)
= 2(z —u, h) + ||,
hence

Df(x)(h) = 2(x —u,h) og |hl|>=e(h)-[hll, med e(h)=]Al,
and the claim is proved.

2. Let xyp € E be the point of the minimum for f(x) = d(z,u)?. It exists, because E N Br(u) is
compact for R > dist(E, ), and f(z), € E, is continuous. It follows from EXAMPLE 10.1 that
Df(zg) =0, so g — u is perpendicular to E.

Any other z € E can be written © = zg+h, h € E. From h | zy —u, and Pythagoras’s theorem
follow that

lz = ull* = llwo — ull® + [|]1%,
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and
2z —u, k) =2(xo —u+h, k) =2(h, k), ke E, hekE.

Choosing k = h # 0 we see that the differential is # 0 at © = 29 + h, h € E '\ {0}, and the claim
is proved.

Example 10.3 Let R™ denote the n-dimensional Euclidean space equipped with the usual inner prod-
uct

n
= E ZiYi,
=1

and the associated norm

lz|| = v/ {z, x) Zx Zj.
i=1

Denote by E = C([a,b],R™) the space of differentiable real-valued functions f : [a,b] — R™ of class
C' defined on the znterval [a bl in R. We can equip E with the structure of a normed vector space
with norm

Iflh = sup (L7 + 1 @1D-

Define the (kinetic) energy function K : E — E by

I I
=5 [ Iswra =5 [ oo porf ek
1. Prove that K is differentiable at every f € E with differential DK (f) : E — R given by
b
DK(f)(h) :/ (O @)t for all h € E.
2. Prove that the differential of K at f € E is zero, i.e. DK(f) =0, if and only if f is a constant

function. HINT: (Try to set h = f.)

3. Provide a physical interpretation of the result in (2).

1. By a computation,

K(f+1)— K(J)
- 3/<ﬂ>+hmf<%Hﬂ»ﬁ—§/kwa%»w

a

= / {s +2(f1(1), ' (6)) + ('(8), B (1)) = (f'(), f'(2))} dt

/Xf@h%>ﬁ+ /nw 2dt,
where
S L, 1 , 1
> [ @R < 5 o= o) 102 = 5 6 a1,
thus
1
0<e(h) <5 0-a)lli =0 for A —o0.

The first term is linear in h for fixed f, thus

b
DK(f)(h) :/ (f'(t),h(t)ydt  forevery fEE, heE.
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2. If f is constant, then clearly f’(t) = 0, hence

DK(f)(h) = /b<0,h’(t)> dt =0  foralle h € E,

Ja

sé DK(f) = 0.

If f is not constant, then f/ # 0. Choosing h = f we get

b b
DE(f)(f) = / (). £(1)) dt = / LF It > 0,

which shows that DK (f) # 0, and the claim is proved.

3. Let f(t) denote the space coordinate of a particle, which moves along the X-axis. The velocity
is f'(t), and the kinetic energy is

b
K= [ If @)

According to (2) the differential is DK (f) = 0, if and only if f(¢) is constant, i.e. if and only if
the particle is at rest.
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Global Analysis 11. Complete metric spaces

11 Complete metric spaces

Example 11.1 Let (S,d) be a metric space. Show that if a subset A in S is a complete metric space
in the induced metric from S, then A is a closed set in S.

Indirect proof. Let xg € A\ A, i.e.

AN By(xg) #0  for every r > 0.

1
To a given r = — we choose x, € AN By/y(20). Then x, — x¢ in S for n — oo. A convergent
n

sequence is also a Cauchy sequence, thus (z,) is a Cauchy sequence in both S and A.

In a metric space a possible limit point for a Cauchy sequence is always unique. The limit point is
xo ¢ A, and we have constructed a Cauchy sequence on A, which is not convergent in A. Hence, A is
not complete in the induced topology.

We get by contraposition that if A is complete in the induced topology, then A is closed.
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Example 11.2 Let X be a compact topological space, and let S be a complete metric space with metric
d.

By C(X,S) we denote the space of continuous mappings f : X — S.

For f, g € C(X,S) we put

D(f,g) = sup d(f(x),g(x)).

zeX
Then D is a metric in C(X,S).

1. Show that (fy) is a Cauchy sequence in the metric space (C(X,S), D) if and only if (fn, : X — 5)
is a uniform Cauchy sequence, i.e.

Ve >03dng e Nvn,meN:n,m>ny = VeeX :d(fulz), fm(x)) <e

Now let (fn) be a Cauchy sequence in (C(X,S), D).

2. Show that for every x € X, there exists a uniquely determined y € S, such that fn(z) — y for
n — oo.

Define a mapping f: X — S by setting f(x) =y for all x € X, where y € S is determined as in (2).
In other words, the mapping f is defined by

flz) = lim f,(y) forz e X.
3. First show that (f,) converges uniformly to f for n going to oo, i.e.
Ve>0ang e NVneN:n>ny = Vze X :d(fu(x), f(z)) <e.

Next show that f : X — S is continuous.
HiNT:

d(f (@), f(w0)) < d(f(x), fu(2)) + d(fn(x), fn(20)) + d(fn(20), f(20))-

4. Show that (C(X,S), D) is a complete metric space.

1. Since d is a metric, it follows that

D(f,g) = sup d(f(z),g(x)) > 0}.

zeX

Furthermore, since X is compact, we have D(f,g) < 0o, so D is defined.
If D(f,g) =0, then d(f(x),g(x)) =0 for every z € X, thus f = g.
Furthermore,

D(f,9) = sup d(f(x),g(x)) = sup d(g(z), f(x)) = D(g, f),

zeX reX

and

D(f,g9) = Supd( (z),9(z))
sup{d( (z), h(x)) + d(h(x),g(x))}
)

IN

zeX
< Supd( (x), h(x) +Supd( (x),9(x))

= (f, h) + D(h.g),
and we have proved that D is a metric on C(X,S).
Assume that (f,,) is a Cauchy sequence in (C(X,S), D). Then

(3) Ve>03ng € NVm, n>ng: D(fm, fn) <e.
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Now,

for all z € X, so
(4) Ve >03ng € NVm, n > noVe € X : d(fm(x), fn(z)) <e.

We see that this is the condition that (f,,) is a uniform Cauchy sequence.

Conversely, if (f,,) is a uniform Cauchy sequence, then (4) holds, and thus in particular
d(fm(x), fn(z)) <e for alle x € X,

and it follows that

D(fmafn) = sup d(fm(x)afn(x)) <e.

zeX

The only difference from the above is that we here have “< ¢” instead of “< &”, so we derive
again (3). This means that (f,) is a Cauchy sequence in (C(X,S), D), and (1) is proved.
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2. Then let (f,) be a Cauchy sequence in (C(X,S), D). It follows from (1) that (f,) is a uniform
Cauchy sequence. In particular, (f,(z)) is a Cauchy sequence on S for every x € X. Since S is
complete, (f,(x)) is convergent for every z € X, hence

Vee XJyeS: lim f,(x)=y.
n—oo
Now, y corresponds uniquely to x, so

f(x) = lim f,(z), r e X,

n—oo
is a well-defined mapping.

3. The sequence (f,) is a uniform Cauchy sequence, and the pointwise limit function f exists
everywhere. Hence, (f,) is uniformly convergent with the limit function f.

We shall prove that the limit function f is continuous. Using the hint we consider the estimate

() d(f(x), f(x0)) < d(f (@), fn(2)) + d(fn(2), fn(20)) + d(fn(0), [ (20))-

It follows from (4) that given any € > 0 we can find an ng, such that
d(fm(2), fu(z)) < % for every z € X, if m, n > no.
It follows that

d(f(x), fn(x)) <

£

6+%:§ for every z € X and n > ny,

and we now control the first and the third term of (5).
Using that f,,(z) is uniformly continuous there is a § > 0, such that

d(fn(), fu(w0)) <

, if x € U (),

W ™

where U, (z¢) is an open neighbourhood corresponding to € and .

Hence, if = € U.(x0), then

3 3

d(f(2), flx0) S S5+ 5 =<

and f is continuous at every xg € X, i.e. in all of X.

4. We shall only collect all the previous results: If (f,,) is a Cauchy sequence in (C(X,S), D), then
(fn), fn: X — S, is a uniform Cauchy sequence of limit function f, where this limit function
f € C(X,8) is also continuous.

In other words: The Cauchy sequence (f,) converges uniformly (hence also in the metric D)
towards a continuous function f € C(X,5), and (C(X,S), D) is a complete space.
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12 Local Existence and Uniqueness Theorem for Autonomous
Ordinary Differential Equations

Example 12.1 (Local Existence and Uniqueness Theorem for Autonomous Ordinary Differential
Equations.)

Let E be a Banach space, and let U S E be an open set in E. The norm in E is denoted by || - ||.

A mapping f: U — E is said to be Lipschitz continuous in U, if there exists a constant k, such that

If(z1) = fz2)|| < Kl|lz1 — 22| for all x1, x5 € U.

Now assume that f : U — E is a Lipschitz continuous mapping in U. (One can think of f as a vector
field in U by placing the vector f(x) € E at every point x € U.)
Consider the Initial Value Problem consisting of the differential equation (i) below together with the
initial value condition (ii):

d

(i) 2 = f(a), (i7) 2(0) =z € U.

dt
By a solution, or, an integral curve, to the Initial Value Problem (i) and (i) we understand a differ-
ential curve ¢ : J — U defined in an interval J around 0 € R, such that

d
d—f = f(e(1)) forallt € J,
and such that ¢(0) = xq.

1. Show that ¢ : J — U solves (i) and (ii) if and only if ¢ satisfies the integral equation
t
o) =0+ [ flo(r)) dr
0

For a >0, let J, denote the interval J, = [—a,al], and for b > 0, let
Sy={z € E|[lx — xol < b}

denote the closed ball in E with centre o € U and radius b. For b > 0 sufficiently small, we have
Sy € U, and we shall only consider such b.

Let C(J,, Sp) denote the space of continuous mappings ¢ : J, — Sy equipped with the metric D as in
ExampPLE 11.2.

To v € C(Ja, Sp) we associate ¥ : J, — E defined by

P(t) = zo +/0 fle(m)dr forte J,.

N

. Show that for sufficiently small a > 0, the mapping ¥ € C(Jq4, Sp).

95

. Show that for sufficiently small a > 0, the mapping
T :C(Ja, Sp) = C(Ja: ),
which assigns ¢ = T(p) € C(Jq, Sp) to ¢ € C(Jy, Sp), is a contraction.
4. Show that with a > 0 as in (3), there exists a unique solution ¢ € C(J,,Sy) to the differential
equation

dx
a = f(l’),

such that ©(0) = xg.

5. Show that if o1 : J1 = U and @2 : Jo — U are two solutions to the differential equation
dx
E - (:C),

defined in overlapping open intervals Ji and Jo in R, such that ¢1(tg) = pa2(to) at a point
to € J1 N Ja, then p1(t) = pa(t) at all points t € J; N Jo.

Download free books at BookBooN.com

71



Please click the advert

Global Analysis

12. Local Existence and Uniqueness Theorem for Autonomous ...

6. Show that there exists a unique mazimal solution to the Initial Value Problem (i) and (ii). (A
maximal solution in a solution with an open interval of definition that cannot be extended.)

d
1. Tt follows from -2 = f(o(t)) by an integration that

dt

ﬂﬂ—ﬂ®=AfWhDM,

so we get since ¢(0) = z( that

@@=%+Af@@ﬂf

Conversely, if ¢ is given by this integral equation, then ¢(0) = zg + 0 = z, and

de _
dt

[f(p(m)]r=t = Fp(1)),

and the claim is proved.
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2. From S, C U follows that ¢(t) € U for every t € J,, hence

{ans [ reenar} ~{oo+ [ ot ar)

t flp(r))dr = t {f(p(m)) = flp(to)) } dr + t f(p(to)) dr

Y(t) — ¥ (to)

and we get the estimate

[(8) =9 (to)ll - <

— f(e(to))| dr

/ lo(r) — o(to)] dr

Since ||f(¢(t0))]] is a fixed number, we can choose d; > 0, such that

+ 1 (o)l - [t — ol

IN

+ 17 (o))l - [t = tol-

€
1 (e(to))| - [t = tol < 3 for |t —to| < d1.
Now, ¢ is continuous, so to every €1 > 0 we can choose d2 > 0, such that
le(r) = (to)ll <1 for |7 —to| < 0.

In this case we have

/Hw plto)|ldr| < ke - 52<§
for €1, 02 > 0 sufficiently small. (It suffices to choose €; > 0, and then J3 = mln{52, ;k})
Then
o) — gl < 5 + 5 =
for |t —tp] < 0 = mln{51,53}, thus 1 € C(Jq, Sp).
3. We have

Te0(0)-2ea)(0) = {aa+ [ tf(sol(T))dT}—{wo +f tf(soz(T))dT} -/ {F(on (7)) Floa(r))} dr,

so by the Lipschitz condition,

IIT(<P1)(t)—T(<P2)(t)||§’ [ 15t = stgatrlan szc-\ [ s = ol ]

If D, is the metric on C(J,, Sp), given by
Da(p1,p2) = sup |le1(t) — 2(t) ],
teJa
then it follows that

Do(T(p1), T(p2)) < k- ‘/O Do(p1,p2)dr| < k-a- Da(p1,$2)-

Choose a > 0, such that k-a < 1. Then T : C(J,, Sp) — C(Jq, Sp) is a contraction.

4. Tt follows from EXAMPLE 11.2 that (C(J,, Sp), D,) is a complete metric space. By Banach’s fix-
point theorem the contraction T has only one fixpoint, thus there exists a unique ¢ € C(J,, Sy),
such that ¢(t) = T()(¢). This means that

£) = w0 + / f(p(r)) dr

This is by (1) equivalent with that = ¢(t) is the unique solution of

=@, 2(0) =10
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5. Let ¢1 : J1 — U and ps : Jo — U be two solutions which agree in a point ty € J; N Jy, where
both J; and Js are closed intervals. We claim that

©1(t) = @a(t) for every t € J; N Js.
The mapping ¢ — 2 is continuous, so

{teindy|oi(t) = @2(t)} = (o1 — 2)° " ({0}) N (J1 N J)

is a closed and nonempty set. If it is not all of J; N Ja, then the set (o1 — ¢2)°~1({0}) must
have a boundary point ¢;, which lies in the interior of J; N Js.

It follows from ¢1(t;) = @a(t1) and the construction above that 1(t) = o(t) in an interval
[t1 — b, t1 + b] around ¢4, i.e.

[t1 = bt + 8] S (p1 — 92)° " ({0}).

Then ¢; is not a boundary point which contradicts the assumption. Hence, we conclude that
(o1 = 92)° {0 N (1N J2) = Ty N T,

thus ¢1 () = wa(t) on J; N Js.

6. Let ¢ : J — U be a maximal solution of (i) and (ii), hence ¢ is unique on J, and ¢ cannot be
extended further to a unique solution on a larger set J' D J. We shall prove that the interval J
is open.

INDIRECT PROOF. Assume that .J is not open, and let g € J be an end point of the interval.
Then there exists a b > 0, such that ¢ is a unique solution in [ty — b, tg + b]. This means that ¢
is unique on

J' = JUl[tg — b, tg+b] D J,

which contains points which are not in J. This is contradicting the assumption, so we conclude
that every maximal solution is defined on a maximal open interval.
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13 Euler-Lagrange’s equations
Example 13.1 Let [a,b] be a closed and bounded interval in R. Denote by
C'([a, b, R™)

the vector space of differentiable curves x : [a,b] — R™ in R™ of class C*. Equip C*([a,b],R™) with
the norm

2/l = sup{llz(@)l + [l ()| | £ € [a, b]},

in which || - || is the mazimum norm in R™. )
For an arbitrary open set U in R x R™ x R"™, we denote by U the subset of curves x € C*([a,b],R"),
in which (t,z(t),2'(t)) € U for all t € [a,b].

1. Show that U is an open set in C*([a,b], R™).

Now let U be an open set in R x R™ x R™, considered with coordinates
(t,q,p) e R x R" x R",

and let L = L(t,q,p) : U — R be a differentiable function of class Ct.
Define the function f: U — R by

b
f(x):/ Lt a(t), /() dt  forzeD.

2. Show that f : U — R is differentiable in U with the differential determined by

b
Df(a:)h:/ DL(t,z(t), z'(t)) - (0, h(t), ' (t)) dt

forz € U and h € C'([a,b],R™).
In the following, the curves x € U and h € C([a,b],R™) are kept fized.
3. Show that there exists an € > 0, such that the curve x + A\h belongs to U, forall X €] —e,el.
With reference to (3), define the function g :] —e,e[— R by

g(A) = f(z+ Ah) for X el —eg,el.

4. Show that g is differentiable at X = 0 with the differential quotient

9O = [ DLl (1) - 0.h(e). (1) de
b [~ [ OL oL
= /a{;(a—%hi+a—mhi>}dt.

Here, as well as in (5), the partial derivatives of L shall be taken at the points (t,z(t),z'(t)) € U and
the functions h;, h att € [a,b].

5. Now assume that h(a) = h(b) = 0 and that
L=L(tgqp):U—R

is a differentiable function of class C2.

Using integration by parts, first show that

b b
oL d (0L
Ridt =— | — h; dt
/a dp; /a dt <3pi> ’
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and next that
b n
oL d (0L
(0) = — —— =) hspdt.
710 /a {; (3%- dt (%)) }
The system of equations

oy,
dt \ Op; -

is called the Euler-Lagrange equations for the above function f = f(x) defined by L. It is of
fundamental importance in the calculus of variations.

oL
0q;

i=1,...,n,

6. Show that the differentiable curve x :
Df(x) =0, if and only if

[a,b] — R™ in U is a stationary point of f : U — R, i.e.

oL d (8L

e a0.00) = (5 (a(.0)

foralli=1,... n.

1. Let

zo e U ={zeC[a,b],R) |Vt € [a,b] : (t,z(t),2'(t)) € U}.
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13. Euler-Lagrange’s equations

The mapping ¢ +— (¢, xo(t), z4(t)) is continuous [a,b] — R?** 1 and [a,b] is compact, hence the

graph

A= {(t,z0(t),2o(t)) | t € [a, 1]}

is compact.

The compact set A and the closed set R?"T1\ U are disjoint, hence

dist (4, R\ U) > 0.

We have for every € €]0,dist (A, R?"T1\ U) [ that

{z € CY([a,b],R") | |z — zo|ls <} C U.

This is true for

Df(x)h

The interval [a,

every xo € U with € = £(z) > 0, so U is open.

. Let z € U and h € C*([a,b], R™) with 2 4+ h € U. Then

f@+h) = f(z) + ez, h)||h]

b
/ {L(t,x +h,2" + 1) — L(t,z,2")} dt +e1(x, h)| Al

/ {DL(t,2(t), ' (1)) - (0, h(t), h' (1)) + ea(x, W[|RI|} dt + 1 (z, R) || ]

b] is compact, so

b
[ esta iyl dt = ot ) ],
a

and we get by taking the limit,

Df(z)h =

0<e< ——
I

/bDL(t,x(t),x'(t)) (0, h(t),h'(t)) dt.

. There is nothing to prove for h = 0. If h # 0, choose ¢, such that

1H dist (A, R*" 1\ U),
1

cf. (1). Then x + \h € U for every A €] —¢,¢].

g'(0) = Df(z

. Now, ¢’(A\) = Df(x + Ah) - h, so it folows for A = 0 from (2) that

@
Jq;

oL

K2

i ( h; +
i=1

b b
)oh = / DEL(t, (), (1)) (0. h(t), (1)) dt = / {

. The task is almost described completely in the beginning of the example.

Since h;(a) = h;(b) = 0, we get by a partial integration that

b oL
Opi

/

(t) -

R(t)dt = [ggi(t)'hi(t)]:/abi <§;>hi(t)dt
_ _/ab%(gb (1) dt.

When this is inserted into (4), it follows that

g'(0)

{3

oL
0q;

4
dt

OL
Opi

()}

)}
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6. If 2 € U is a stationary point of f : U — R, i.e. Df(x) = 0, then ¢’(0) = 0 for every h € C1.

Then it follows from (5) that

"f&K (oL d (oL
"0) = = _ (= , =0 forall L
g'(0) /a g (5’(]1- g (8])1‘))]11 dt=0 foralleheC

i=1
Choosing in particular
8qi dt 8}%
we see that this is only possible, if

oL d (8L

(6) 8_%_% ):0, fori=1,...,n.

s

Conversely, if (6) holds, then clearly ¢'(0) = 0, and thus D f(z) = 0, so = is a stationary point

for f: U — R.
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